On the In-vitro Antimicrobial Activity of Oleuropein and Hydroxytyrosol

Author:

Bisignano Giuseppe1,Tomaino Antonio1,Cascio Rossella Lo1,Crisafi Giuseppe1,Uccella Nicola2,Saija Antonella3

Affiliation:

1. Department Farmaco-Biologico, University of Messina, Italy

2. CIRASAIA, University of Calabria, University of Rome ‘La Sapienza’, Italy

3. Department of Pharmacology of Natural Substances and General Physiology, University of Rome ‘La Sapienza’, Italy

Abstract

Abstract Secoiridoides (oleuropein and derivatives), one of the major classes of polyphenol contained in olives and olive oil, have recently been shown to inhibit or delay the rate of growth of a range of bacteria and microfungi but there are no data in the literature concerning the possible employment of these secoiridoides as antimicrobial agents against pathogenic bacteria in man. In this study five ATCC standard bacterial strains (Haemophilus influenzae ATCC 9006, Moraxella catarrhalis ATCC 8176, Salmonella typhi ATCC 6539, Vibrio parahaemolyticus ATCC 17802 and Staphylococcus aureus ATCC 25923) and 44 fresh clinical isolates (Haemophilus influenzae, eight strains, Moraxella catarrhalis, six strains, Salmonella species, 15 strains, Vibrio cholerae, one strain, Vibrio alginolyticus, two strains, Vibrio parahaemolyticus, one strain, Staphylococcus aureus, five penicillin-susceptible strains and six penicillin-resistant strains), causal agents of intestinal or respiratory tract infections in man, were tested for in-vitro susceptibility to two olive (Olea europaea) secoiridoides, oleuropein (the bitter principle of olives) and hydroxytyrosol (derived from oleuropein by enzymatic hydrolysis and responsible for the high stability of olive oil). The minimum inhibitory concentrations (MICs) calculated in our study are evidence of the broad antimicrobial activity of hydroxytyrosol against these bacterial strains (MIC values between 0.24 and 7.85 μg mL−1 for ATCC strains and between 0.97 and 31.25 μg mL−1 for clinically isolated strains). Furthermore oleuropein also inhibited (although to a much lesser extent) the growth of several bacterial strains (MIC values between 62.5 and 500 μg mL−1 for ATCC strains and between 31.25 and 250 μg mL−1 for clinical isolates); oleuropein was ineffective against Haemophilus influenzae and Moraxella catarrhalis. These data indicate that in addition to the potential employment of its active principles as food additives or in integrated pest-management programs, Olea europaea can be considered a potential source of promising antimicrobial agents for treatment of intestinal or respiratory tract infections in man.

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

Reference16 articles.

1. Antioxidant actions of thymol, carvacrol, 6-gingerol, zingerone and hydroxytyrosol;Aeschbach;Food Chem. Toxicol,1994

2. Comparative antibacterial and antifungal effects of some phenolic compounds;Aziz;Microbios,1998

3. Antibiotic susceptibility testing by a standardized single disc method;Bauer;Am. J. Pathol,1996

4. Antibacterial polyphenols from olive oil mill waste waters;Capasso;J. Appl. Bacteriol,1995

5. Biological and pharmacological activity of naturally occurring iridoids and secoiridoids;Ghisalberti;Phytomedicine,1998

Cited by 416 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3