Hydrodynamic simulation (computational fluid dynamics) of asymmetrically positioned tablets in the paddle dissolution apparatus: impact on dissolution rate and variability

Author:

D'Arcy D M1,Corrigan O I1,Healy A M1

Affiliation:

1. School of Pharmacy, University of Dublin, Trinity College, Dublin 2, Ireland

Abstract

Abstract The aim of this work was to investigate the dissolution rate from both the curved and planar surfaces of cylindrical compacts of benzoic acid, which were placed centrally and non-centrally at the base of the vessel of the paddle dissolution apparatus. The effect of fixing the compacts to a particular position on the variability of dissolution results was also examined. In addition, computational fluid dynamics (CFD) was used to simulate fluid flow around compacts in the different positions in the vessel, and the relationship between the local hydrodynamics in the region of the compacts and the dissolution rate determined. The dissolution rate was found to increase from the centre position to the off-centre positions for each surface examined. There was a corresponding increase in maximum fluid velocities calculated from the CFD fluid flow simulations at a fixed distance from the compact. There was less variability in dissolution from compacts fixed to any of the positions compared with those that were not fixed. Fluid flow around compacts in different positions could be successfully modelled, and hydrodynamic variability examined, using CFD. The effect of asymmetric fluid flow was evident visually from the change in shape of the eroded compacts.

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3