Tea flavanols inhibit angiotensin-converting enzyme activity and increase nitric oxide production in human endothelial cells

Author:

Persson Ingrid A-L1,Josefsson Martin2,Persson Karin1,Andersson Rolf G G1

Affiliation:

1. Department of Medicine and Care, Division of Pharmacology, Faculty of Health Sciences, Linköping University, Sweden

2. National Board of Forensic Medicine, Department of Forensic Genetics and Forensic Toxicology, Linköping, Sweden

Abstract

Abstract A diversity of pharmacological effects on the cardiovascular system have been reported for Camellia sinensis: antioxidative, antiproliferative and anti-angiogenic activity, and nitric oxide synthase activation. The purpose of this study was to investigate if the connection between tea and angiotensin-converting enzyme (ACE) and nitric oxide (NO) might be an explanation of the pharmacological effects of tea on the cardiovascular system. Cultured endothelial cells from human umbilical veins (HUVEC) were incubated with extracts of Japanese Sencha (green tea), Indian Assam Broken Orange Pekoe (black tea) and Rooibos tea, respectively. The main flavanols and purine alkaloids in green and black tea were examined for their effects on ACE and NO. After incubation with green tea, black tea and Rooibos tea for 10 min, a significant and dose-dependent inhibition of ACE activity in HUVEC was seen with the green tea and the black tea. No significant effect on ACE was seen with the Rooibos tea. After 10-min incubation with (–)-epicatechin, (–)-epigallocatechin, (–)-epicatechingallate and (–)- epigallocatechingallate, a dose-dependent inhibition of ACE activity in HUVEC was seen for all four tea catechins. After 24-h incubation, a significantly increased dose-dependent effect on NO production in HUVEC was seen for the green tea, the black tea and the Rooibos tea. After 24-h incubation with (–)-epicatechin, (–)-epigallocatechin, (–)-epicatechingallate and (–)-epigallocatechingallate, a dose-dependent increased NO production in HUVEC was seen. In conclusion, tea extracts from C. sinensis may have the potential to prevent and protect against cardiovascular disease.

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3