Applications of Markov Chain Approximation Methods to Optimal Control Problems in Economics

Author:

Phelan Thomas M.1ORCID,Eslami Keyvan2

Affiliation:

1. Federal Reserve Bank of Cleveland

2. Ryerson University

Abstract

In this paper we explore some benefits of using the finite-state Markov chain approximation (MCA) method of Kushner and Dupuis (2001) to solve continuous-time optimal control problems in economics. We first show that the implicit finite-difference scheme of Achdou et al. (2022) amounts to a limiting form of the MCA method for a certain choice of approximating chains and policy function iteration for the resulting system of equations. We then illustrate that, relative to the implicit finite-difference approach, using variations of modified policy function iteration to solve income fluctuation problems both with and without discrete choices can lead to an increase in the speed of convergence of more than an order of magnitude. Finally, we provide several consistent chain constructions for stationary portfolio problems with correlated state variables, and illustrate the flexibility of the MCA approach by using it to construct and compare two simple solution methods for a general equilibrium model with financial frictions. Replication materials may be found at https://github.com/tphelanECON/EslamiPhelan_MCA.

Publisher

Federal Reserve Bank of Cleveland

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3