EXPERIMENTAL INVESTIGATION & ANALYSIS OF HEA TRANSFER CHARACTERISTICS IN AUTOMOTIVE MMC DISC BRAKE UNDER STEADY STATE AND DYNAMIC CONDITIONS

Author:

A Agarwal, ,O.B Molwane,M.T Letsatsi, ,

Abstract

During braking process, the kinetic energy of vehicle reduces and gets converted in thermal energy due to friction between disk and brake pads. The disk brake is used to retard the motion of vehicle by pressing brake pads against disk rotors. The frequent braking or panic braking results in overheating of brake disks which may result in brake fade. It is therefore essential to test newer materials which are more effective and possess better heat transfer characteristics than conventional cast iron material. The current research investigates the application of Al MMC material for ATV disk brake using experimental and numerical techniques. The numerical analysis is conducted on both conventional cast iron and Al MMC disk brake under steady state conditions and dynamic conditions. The dynamic condition testing involved testing of disk brake with externally flowing air at 2.5m/s and 5m/s using techniques of Computational Fluid Dynamics (CFD). The CAD model of ATV disk brake is developed in Creo design software and CFD analysis is conducted using ANSYS CFX. The turbulence model used for analysis is RNG k-epsilon. The temperature and heat flux are determined for disk brake under steady state and dynamic conditions. The results have shown that disk brake made from Al MMC possess better heat transfer characteristics as compared to conventional cast iron and cooling time also reduces with increase in external air speed.

Publisher

Journal of Engineering Research

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3