Surface Characteristics of Low Carbon Steel JIS G3101 SS400 after Sandblasting Process by Steel Grit G25

Author:

Muslimin Muslimin, ,Muhamad Azam Milah,Triawan Farid,Nandiyanto Asep Bayu Dani, , ,

Abstract

This research aims to study the surface characteristics of low carbon steel JIS G3101 SS400 processed by sandblasting using steel grit G25. The sandblasting process is conducted at a fixed nozzle pressure of 5 bar and pressure angle of 90o, and varying nozzle-to-surface distances at 15, 25, and 30 cm, and blasting durations of 25, 45, and 120 s. Surface characterization is firstly carried out by conducting observation on the surface’s morphology by SEM and chemical composition by EDS. Subsequently, visual inspection and measurement on surface roughness and hardness profile identification by Rockwell and micro-Vickers hardness tests are conducted. A paint thickness test using ASTM D7091 was undertaken to observe the surface characteristics related to the coating process. Based on the result, SEM found valleys, granules, micro-cracks, and grits embedded on the surface. The visual inspection shows the roughness is within the range of Sa2 - Sa3 of ISO 8501 with values are Ra 18.1 and Ra 21.4 µm. The hardened layer exhibits a maximum hardness value of 332 HV and a depth of more than 50 µm by sandblasting parameters of 15 cm distance and 120 s duration. Both roughness and hardness profiles are confirmed, increasing with closer nozzle-to-surface distance and longer blast duration. It is concluded that sandblasting using steel grit G25 is effective in improving the mechanical strength and surface hardness of low carbon steel SS400. These mechanical properties are essential in the paint coating of machinery applications such as pump, tank, ship, and pipeline.

Publisher

Journal of Engineering Research

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of Quality Function Deployment (QFD) in Die Redesign to Lowering Rework of Stamping Parts;International Journal of Industrial Engineering and Management;2023-09-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3