Study of non-Newtonian polymer blends using large amplitude oscillatory shearing flow

Author:

Daffallah Isameldeen E., ,Almusallam Abdulwahab S.,

Abstract

Large amplitude oscillatory shear (LAOS) was performed on non-Newtonian minor phase in Newtonian matrix phase polymer blends as a first step toward understating more complex immiscible polymer blends under high deformation condition. The blend consists polybutadiene (PBD) as the droplet phase and polydimethylsiloxane (PDMS) as the matrix phase. The PBD droplet phase was an elastic “Boger” fluid prepared by dissolving a high-molecular-weight PBD into a low-molecular-weight Newtonian PBD. Different percentages of the high-molecular-weight PBD were used to prepare different types of Boger fluids that resulted in blends with different viscosity ratios from lower than unity, to unity and higher than unity. Furthermore, the LAOS results of the blends were analyzed by using the Fourier Transform (FT) technique. From a theoretical point of view, the constrained volume model (CV-model) for Newtonian components is adapted to the case of a Newtonian matrix phase and non-Newtonian Boger fluid droplet phase by taking into account stresses that arise in the Boger fluids. The adapted model and the Newtonian CV-model were compared to the experimental results of FT-LAOS for checking the predictability of the model against the rheological properties. The adapted model shows some reasonable qualitative and quantitative agreements at high strain amplitude values.

Publisher

Journal of Engineering Research

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3