Tracking patients healthcare experiences during the COVID-19 outbreak: Topic modeling and sentiment analysis of doctor reviews

Author:

Shah Adnan M., ,Yan Xiangbin,tariq Samia,Shah Syed Asad A., , ,

Abstract

Emerging voices of patients in the form of opinions and expectations about the quality of care can improve healthcare service quality. A large volume of patients’ opinions as online doctor reviews (ODRs) are available online to access, analyze, and improve patients’ perceptions. This paper aims to explore COVID-19-related conversations, complaints, and sentiments using ODRs posted by users of the physician rating website. We analyzed 96,234 ODRs of 5,621 physicians from a prominent health rating website in the United Kingdom (Iwantgreatcare.org) in threetime slices (i.e., from February 01 to October 31, 2020). We employed machine learning approach, dynamic topic modeling, to identify prominent bigrams, salient topics and labels, sentiments embedded in reviews and topics, and patient-perceived root cause and strengths, weaknesses, opportunities, and threats (SWOT) analyses to examine SWOT for healthcare organizations. This method finds a total of 30 latent topics with 10 topics across each time slice. The current study identified new discussion topics about COVID-19 occurring from time slice 1 to time slice 3, such as news about the COVID-19 pandemic, violence against the lockdown, quarantine process and quarantine centers at different locations, and vaccine development/treatment to stop virus spread. Sentiment analysis reveals that fear for novel pathogen prevails across all topics. Based on the SWOT analysis, our findings provide a clue for doctors, hospitals, and government officials to enhance patients’ satisfaction and minimize dissatisfaction by satisfying their needs and improve the quality of care during the COVID-19 crisis.

Publisher

Journal of Engineering Research

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3