Multilevel converter integration for low voltage ride through controlling renewable wind energy conversion systems

Author:

Ahmed Mahrous, ,Alamri Bassem,Metwally Mohamed,Alharthi Mosleh,Alzaed Ali,Elkalashy Nagy,Salem Farhan,Mekhilef Saad,Orabi Mohamed,Ghoneim Sherif, , , , , , , , ,

Abstract

In this study, a new control of grid-connected doubly-fed induction generators (DFIGs) is introduced to attain lowvoltage ride-through capability. The grid-side converter is proposed to be a multilevel converter (MLC) controlled by conventional DC-link voltage controller. The MLC is designed and integrated into the grid-connected DFIG. The rotor-side converter is considered a two-level conventional converter controlled by the proposed virtual voltage strategy. The virtual strategy is to use the designed input control signal rather than the actual measured one during system disturbance. The system disturbance in this study is the voltage dip. The proposed virtual controller is designed to use busbar voltage during normal operation, whereas it utilizes the designed virtual voltage during wide range conditions of low grid voltages. The energy conversion system currents are increased due to voltage dip disturbances. The use of designed virtual voltage values is proposed as inputs to the controller to limit these currents at the rating values. These virtual voltages are extracted using direct-quadrature machine representation and fixed machine currents at the rated values or lower. On the basis of the proposed control concerning the virtual voltage concept, the generator currents are limited to the rated values, thereby protecting the energy conversion system during low grid voltages. Simulation results prove the validity of the proposed control scheme during extreme low voltages.

Publisher

Journal of Engineering Research

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3