Design and discrete optimization of hybrid aluminum/composite drive shafts for automotive industry

Author:

Beylergil Bertan,

Abstract

Fiber reinforced composites have been widely used in automotive industry since they offer significant weight reduction, low manufacturing and tooling cost, and better integration of parts compared to metal counterparts. In this study, design optimization of a hybrid aluminum/composite drive shaft subjected to torsion was carried out using ANSYS Workbench with ACP module. The numerical validation of finite element (FE) model was carried out by means of theoretical, experimental, and numerical studies in the literature. The ply material, lay-up orientations, and thickness of aluminum layer were considered as design variables. The geometric parameters in design were the length and inner diameter of the drive shaft. Two important design constraints, the minimum first mode natural frequency and design torque, were considered to satisfy the design requirements of a rear-wheel drive shaft used in automotive industry. The optimum design variables were determined by using screening method. The optimum design parameters (length, inner diameter, ply angle, and material) were presented in tabular form. Compared to nonoptimized scenario, the optimized solution reduced the cost of the hybrid composite drive shaft about 30% without ignoring the design requirements.

Publisher

Journal of Engineering Research

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3