Investigation of helical strut attached vena cava filter hemodynamic performanc

Author:

Selimli Selcuk,

Abstract

Hemodynamic performance of the Celect Platinum vena cava filter and the revised forms of it with helical flow inducer strut were studied with computational fluid dynamic software Ansys Fluent 18. The central velocity and shear stress increased but overall flow disturbance has been observed minimal level. Central velocity increases to 9.72% with Celect filter, by the single helical flow inducer strut the rate reaches to 14.69%, and with doubled form it reaches to 19.73%. The filter surface shear rate increases to 8.29% with the single helical flow inducer strut and increases 13.31% with doubled attachment. Increased velocity and shear stress on the filter may eliminate short term thrombus build-up problems by breaking the big size particulates with the high shearing forces. The new struts may also contribute to the ability of the filter to capture smaller clots, as well as to dissolve them from being bigger. Shear stress in the vein wall increases approximately 6.63% with the filter placement. It raises to 8.06% and 9.45% with single and double helical flow inducer strut attachment. Increased vein wall shear may reduce the recirculation and clotting in the vein wall and it may prevent the accumulation of clots. The increased shear stress on the filter may cause the migration problem, design improvements can minimize this risk. Helical flow inducer strut attachment can cause efficacy increase, and the flow are normalized.

Publisher

Journal of Engineering Research

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of Operating Performance Parameters of the Internal Twin Screw Pump;Iranian Journal of Science and Technology, Transactions of Mechanical Engineering;2023-11-16

2. Study of Heat Transfer Enhancement Within a Square Duct Twisted Clockwise–Counterclockwise;Iranian Journal of Science and Technology, Transactions of Mechanical Engineering;2023-02-24

3. Evaluation of hemodynamic effects of different inferior vena cava filter heads using computational fluid dynamics;Frontiers in Bioengineering and Biotechnology;2022-10-10

4. Numerical analysis of thermal dynamics and mixing performance in the blade-type static mixers;Journal of Mechanical Science and Technology;2022-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3