Predicting the flow zone indicator of carbonate reservoirs using NMR echo transforms, and routine open-hole log measurements: Insights from a field case study spanning extreme micro-structure properties

Author:

Al-Dousari Mabkhout, ,Almudhhi Salah,Garrouch Ali A., ,

Abstract

Predicting the flow zone indicator is essential for identifying the hydraulic flow units of hydrocarbon reservoirs. Delineation of hydraulic flow units is crucial for mapping petrophysical and rock mechanical properties. Precise prediction of the flow zone indicator (FZI) of carbonate rocks using well log measurements in un-cored intervals is still a daunting challenge for petrophysicists. This study presents a data mining methodology for predicting the rock FZI using NMR echo transforms, and conventional open-hole log measurements. The methodology is applied on a carbonate reservoir with extreme microstructure properties, from an oil “M” field characterized by a relatively high-permeability with a median of approximately 167 mD, and a maximum of 3480 mD. The reservoir from the M field features detritic, or vuggy structure, covering a wide range of rock fabrics varying from microcrystalline mudstones to coarse-grained grainstones. Porosity has a median of approximately 22%. Dimensional analysis and regression analysis are applied for the derivation of four transforms that appear to capture approximately 80% of the FZI variance. These four transforms are formulated using the geometric mean of the transverse NMR relaxation time (T2lm), the ratio of the free fluid index (FFI) to the bulk volume irreducible (BVI), the bulk density, the sonic compressional travel time, the true resistivity, the photo-electric absorption, and the effective porosity. Non-linear regression models have been developed for predicting the FZI using the derived transforms, for the carbonate reservoir from the M field. The average relative error for the estimated FZI values is approximately 52%. The same transforms are used as input for training a developed general regression neural network (GRNN), built for the purpose of predicting rock FZI. The constructed GRNN predicts FZI with a notable precision. The average absolute relative error on FZI for the training set is approximately 3.1%. The average absolute relative error on FZI for the blind testing set is approximately 22.0 %. The data mining approach presented in this study appears to suggest that (i) the relationship between the flow zone indicator and open-hole log attributes is highly non-linear, (ii) the FZI is highly affected by parameters that reflect rock texture, rock micro-structure geometry, and diagenetic alterations, and (iii) the derived transforms provide a means for further enhancement of the flow zone indicator prediction in carbonate reservoirs.

Publisher

Journal of Engineering Research

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3