Effects of pounding on the behavior of reinforced concrete frame structures in seismic zone 2B

Author:

Hamid Muhammad, ,Ur Rahman Fayyaz,Ali Qaisar, ,

Abstract

Pounding between adjacent buildings is a common phenomenon which can be observed during moderate to high ground shakings that can result in structural damage and even loss of life. As this phenomenon is related to the life safety, therefore, it is imperative to consider it in the modelling stage of structural analysis and design. The current study is intended to evaluate, numerically, the effect of pounding phenomenon in RC frame structures. Three dimensional models of two hypothetical buildings are analyzed by subjecting to three ground acceleration histories that are scaled and matched with BCP-SP07 design spectrum. The analysis results such as inter storey drift, maximum displacement, pounding forces and its effects on bending moment, axial forces, shear and torsional forces in structural members are compared. The results show that pounding forces decrease with increase in gap size and are dominant in top five stories with maximum force at the top floor level. Pounding increase displacement up to 2 times and acceleration up to 240 times as compared to without pounding case. Pounding increase the axial forces up to 250 times and bending moment up to 2 time in the beams parallel to colliding forces. Similarly, the shear forces and torsional moments are almost doubled as a result of pounding. Finally, a 20 storey building consists of four blocks separated by 3-inch expansion joints is modelled combinedly in Etabs and analyzed to see the effect of pounding. Based on the results it is concluded that pounding must be considered at modelling stage of the design to account for the forces induced in the structural members.

Publisher

Journal of Engineering Research

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Limiting Drift to Mitigate Pounding Effects on RC Buildings Under Earthquake Shaking;Iranian Journal of Science and Technology, Transactions of Civil Engineering;2024-02-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3