Author:
A Ramakrishnan, ,Krishnan B.Radha,
Abstract
This paper presents the methodology of surface roughness inspection in the CNC Turning process. Adaptive Neural Fuzzy Inference System classifier can predict the high accuracy roughness value by insisting on surface roughness image. The vision system captures the image and determines the mean value by using the ANFIS algorithm. Training sets variables speed, depth of cut, feed rate, and mean value are feed as the input, and manual stylus probe surface roughness value is feed as the output. After the simulation process, the testing input was performed, and finally getting the vision measurement value. This higher accuracy (above 95%) and low error rate (below 4%) can be achieved by using the ANFIS classifier, which is predominantly helpful for the industry to measure surface roughness. Assign the quality of the product by evaluating the manual stylus probe and vision measurement value.
Publisher
Journal of Engineering Research
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献