Thermal stability of n-TiB2 reinforced α-Al2O3/SiC based nanocomposite sintered at 1600˚C using TG/DTA under controlled Ar atmosphere

Author:

Nallusamy Tamilselvam, ,S Vijayakumar,

Abstract

Innovation in material science progresses the usage of Al2O3/SiC based nanocomposites in gas turbine engine components, the harp-shaped structure of hypersonic rocket engine cutting tools for Ni, Al alloys, and clutch plate for two-wheelers. Thermal stability is one of the significant properties of gas turbine and rocket engine materials. Future engines may have to operate at very high temperature that may require high thermally stable material. In this research, an attempt is made to enhance the thermal stability of the Al2O3/SiC based nanocomposite by reinforcing 5-20 Vol. % nano Titanium Boride. Fabrication of α-Al2O3/SiC with 5-20 Vol. % n-TiB2 was carried out through pressureless sintering at 1600˚C followed by cold compaction. The fabrication process was carried out at a controlled Ar atmosphere. Thermal stability of the sintered samples was analyzed by NETZSCH STA 449F3 thermogravimetric analyzer with a heating rate of 10˚C/min and compared with Al2O3/SiC. The composite α-Al2O3/SiC/(5-20 Vol. %) n-TiB2 showed good thermal stability up to 1488˚C with 6% less mass change than Al2O3/SiC. The addition of n-TiB2 enhanced the collaboration between the atoms and postponed the decomposition temperature. The microstructure of the 20 vol % n-TiB2 added α-Al2O3/SiC was captured by 20 kV JSM-5600J Scanning Electron Microscopy and confirmed the presence of n-TiB2. Also, the presence of Ti, Si, Al, O, and B in the nanocomposite was confirmed by energy dispersive analysis of X-beams (EDS).

Publisher

Journal of Engineering Research

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3