Author:
Anwar Khoerul, ,Setyowibowo Sigit,
Abstract
The actual problem that frequently happens related to meat sales at conventional markets is the manipulation of pork and beef. It can happen as both visual textures bear resemblances. Texture is a crucial part of an object. In image processing, textures can be used for classification, recognition or prediction of an image. This paper offers the Minimum Overlap Probability - Neural Network method for the identification of digital image features of pork and beef.. Minimum Overlap Probability was employed to select features of the strongest characteristics, whilst Neural Network is used for training and classification. Based on the test results, the strongest features are maximum probability, contrast, sum average, autocorrelation, and energy and entropy sum. Based on MOP-NN Model test result, the digital image identification of beef and pork has performance with an accuracy of 96% on 400 images of sample data.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. KNN Algorithm Optimization in GLCM-Based Beef and Pork Image Classification;2023 International Seminar on Application for Technology of Information and Communication (iSemantic);2023-09-16