The Identification of Beef and Pork Using Neural Network Based on Texture Features

Author:

Anwar Khoerul, ,Setyowibowo Sigit,

Abstract

The actual problem that frequently happens related to meat sales at conventional markets is the manipulation of pork and beef. It can happen as both visual textures bear resemblances. Texture is a crucial part of an object. In image processing, textures can be used for classification, recognition or prediction of an image. This paper offers the Minimum Overlap Probability - Neural Network method for the identification of digital image features of pork and beef.. Minimum Overlap Probability was employed to select features of the strongest characteristics, whilst Neural Network is used for training and classification. Based on the test results, the strongest features are maximum probability, contrast, sum average, autocorrelation, and energy and entropy sum. Based on MOP-NN Model test result, the digital image identification of beef and pork has performance with an accuracy of 96% on 400 images of sample data.

Publisher

Elsevier BV

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. KNN Algorithm Optimization in GLCM-Based Beef and Pork Image Classification;2023 International Seminar on Application for Technology of Information and Communication (iSemantic);2023-09-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3