Reducing NOx emissions by adding hydrogen-rich synthesis gas generated by a plasma-assisted fuel reformer using Saudi Arabian market gasoline and ethanol for different air/fuel mixtures

Author:

Alharbi Dr. Ahmed Awadh,Aenazey Dr. Feraih Sh.,Binjuwair Dr. Saud A.,Alshunaifi Dr. Ibrahim A.,Alkhedair Dr. Abdullah M.,Alabduly Dr. Abdullah J.,Almurat Mohammed S.,Albishi Miqad S.

Abstract

Environmental contamination poses a real threat to the environment and all organisms. Air pollution has increased markedly due to an increase in human activities and petroleum use for electricity generation, transportation, and industrial applications. Internal combustion engines play a significant role in society’s health and power requirements. However, automobiles are the main source of pollution and NOX emissions. This work presents a study of the performance and exhaust emissions of an internal combustion engine fuelled by gasoline available in the Saudi Arabian market, RON91/RON95, with an admixture of syngas and 5% by volume pure ethanol (E5) in the presence of different ultra-lean mixture regimes, including λ=1 for a stoichiometric mixture. The studied ranges were λ=1.13, λ=1.26, λ=1.43, and λ=1.67. An entirely automated engine and plasma converter system was developed for feeding the same type of fuel. The engine was modified for a more efficient operation by introducing a plasma-based fuel reformer. Syngas was produced through the partial oxidation of gasoline with air in a plasma-assisted fuel reformer in the presence of steam to reduce the amount of soot formed in the plasma reactor. The fuel consumption and related emissions were measured. The experimental results demonstrated a significant total reduction of NOx emissions compared with those from the original engine. The most obvious reduction (approximately 50%) of harmful pollution was observed under lean conditions, and the total gasoline consumption (including the gasoline required for the plasma-assisted converter) slightly increased. The results also showed that the NOx content for these new blends was lower using E5-gasoline 91 than that using E5-gasoline 95 and was generally lower using E5-gasoline 91 and syngas than that using E5-gasoline 95 and syngas.

Publisher

Journal of Engineering Research

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3