A NOVEL PROBABILISTIC GENERATION MODEL FOR GRID CONNECTED PV BASED DISTRIBUTED GENERATION

Author:

Khan Muhammad Faisal Nadeem

Abstract

The feasibility of renewable energy resources such as solar energy is marked by uncertainties that make it an unpredictable mean of power generation. To guarantee an uninterrupted power supply, solar irradiance modelling can be taken as a useful step towards meeting the operational challenges of electric power grid. This paper proposes a dynamic Probabilistic generation model to estimate and generate the time-coupled solar irradiance patterns. Initially, clustering of yearly solar irradiance measurements is performed to obtain a meaningful grouping of similar days. One-hour time step is considered to construct a time-coupled probabilistic model of solar irradiance data based on a Beta distribution. The parameters of beta distribution are found by considering the variations of irradiance patterns at two successive time steps. The probabilistic model is then used to generate number of aggregate solar irradiance generation scenarios. The effectiveness of proposed scenario generation approach is evaluated through Average Mean Absolute Percentage Error (AMAPE) and comparison with the probabilistic model already available in the literature.

Publisher

Journal of Engineering Research

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3