Experimental Modal Analysis of a Linear Reciprocating Tribometer for Maximum Reciprocating Frequency

Author:

Viswanathan Harish Thetanikkal, ,John Prem Kumar,Rajalekshmi Rajeev Vamadevan, ,

Abstract

This work demonstrates estimation of critical reciprocating frequency of a fabricated linear pin-on-reciprocating plate tribometer by modal analysis. Experimental investigation by impact testing and numerical analysis using ANSYS Work bench 14 were performed to extract the modal parameters of individual subsystems. The authors could not find reported literature on of estimation of critical reciprocating frequency of pin-on-reciprocating plate tribometer. Authors developed a pin-onreciprocating plate tribometer that can simulate friction and wear under reciprocating sliding conditions for stroke lengths up to 150 mm. The developed pinon- reciprocating plate tribometer had a loading sub system, transmission subsystem and measurement subsystem. From experimental and numerical estimation of modal parameters, transmission subsystem found to had the lowest modal frequency of 18 Hz. Maximum frequency of reciprocation then fixed at 30% of the lowest modal frequency of 18 Hz that is 5 Hz. Confirmatory friction tests were then conducted on the tribometer and found that identification of maximum frictional force was difficult when the reciprocating frequency of plate of tribometer exceeded 4 Hz due to vibrations in measuring system and agreed with the reported literature. This work addresses the need of methodology for establishing critical reciprocating frequency of tribometer. This paper elaborates the modal analysis of a fabricated linear reciprocating tribometer. Resonance of subsystems in reciprocating tribometer affects experimental estimate of coefficient of friction (CoF). Subsystems have their own individual modal frequencies. Hence, modal analysis of all subsystems becomes obligatory. Tribometer developed for this study can simulate reciprocating friction and wear for stroke lengths up to 150 mm. Experimental and numerical analysis utilized to identify modal frequency of individual subsystems. Tests identified that transmission subsystem had the lowest modal frequency of 18 Hz. Maximum frequency of reciprocation then fixed at 4Hz. This is 25% of the lowest modal frequency of 18 Hz as delineated in literature. Confirmatory friction tests then conducted on the tribometer. Resolving maximum frictional force along the stroke length was impossible over 4 Hz of reciprocating frequency. This is 25% of the lowest modal frequency of structure and agreed with the reported literature. Authors sincerely hope the methodology used in this paper will guide fellow researchers for modal analysis of reciprocating tribometer.

Publisher

Journal of Engineering Research

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3