A Taguchi approach for optimization of mass transfer coefficient in metronidazole drug delivery process and activated carbon as a carrier

Author:

F. Hameed Shahad, ,Rushdi Salih,T. Al-Sharify Zainab, ,

Abstract

New strategies have been developed in the drug delivery system in recent years for applications like pharmacokinetics control, pharmacodynamics, undetermined toxicity, immunity, biophysics, and drug efficacy. The loading process was based on adsorption between activated carbon molecules' surfaces and drug molecules dissolved in ethanol at room temperature, where porous activated carbon has great drug delivery characteristics. The current research is studying the effect of the number of parameters including particle size, the weight of drug to the carrier, weight ratio, drug loading and temperature, time, and pH solution on mass transfer coefficient. The Taguchi program's result shows that the optimum point of maximum loading efficiency is 74% when the activated carbon in nanoparticle was in 11.042 nm size, and 985.6013 m2/g surface area weight drug to AC weight ratio is 1.5. The drug process release obtained an optimum point that gives a better value of mass transfer coefficient of 0.0007777 and 0.0003372 cm/hr in the first hour, 37°C, and pH of 1.5 solutions for both metronidazole/macro AC and metronidazole/Nano AC complexes.

Publisher

Journal of Engineering Research

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3