Wasserstein Distance- EEMD Enhanced Multi-Head Graph Attention Network for Rolling Bearing Fault Diagnosis Under Different Working Conditions

Author:

Wang Xingbing,Yao Yunfeng,Gao Chen

Abstract

Traditional fault diagnosis models often overlook the interconnections between segments of vibration data, resulting in the loss of critical feature information. Therefore, an efficient fault diagnosis model tailored for rolling bearings is proposed in this paper. The 1D vibration signals are first preprocessed using ensemble empirical mode decomposition (EEMD) to generate multiple intrinsic mode functions (IMF) as individual nodes. The percentage distance between each node is calculated using the Wasserstein distance (WD) to capture the relationships between nodes and use it as the edge weights to construct a node graph. An improved multi-head graph attention network (MGAT) model is established to extract features and perform classification on the node graph. This MGAT model effectively utilizes the relationships between nodes and enhances the accuracy of fault diagnosis. The experimental results demonstrate that the proposed method achieves higher accuracy compared to similar models while requiring less processing time.

Publisher

Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3