Abstract
The commonly used reliability analysis approaches for Kriging-based
models are usually conducted based on high-fidelity Kriging models.
However, high-fidelity surrogate models are commonly costly.
Therefore, in order to balance the calculation expense and calculation
time of the surrogate model, this paper proposes a multi-fidelity Kriging
model reliability analysis approach with coupled optimal important
sampling density (OISD+MFK). First, the MEI learning function is
proposed considering the training sample distance, model computation
cost, expected improvement function, and model relevance. Second, a
dynamic stopping condition is proposed that takes into account the
failure probability estimation error. Finally, the optimal importance
sampling density is incorporated into the reliability analysis process,
which can effectively reduce failure probability estimation error. The
results of the study show that the approach proposed in this paper can
reduce the calculation cost while outputting relatively accurate failure
probability evaluation results.
Publisher
Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne
Subject
Industrial and Manufacturing Engineering,Safety, Risk, Reliability and Quality
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献