Research on resilience model of UAV swarm based on complex network dynamics

Author:

Wei KunlunORCID,Zhang TaoORCID,Zhang ChuanfuORCID

Abstract

The resilience of UAV swarms mainly revolves around ensuring stable and uninterrupted operations. Malicious attacks can implement the adverse impacts of potential threats through swarm communication links. In this context, the SIS (Susceptible → Infected → Susceptible) method is suitable for describing the information transmission within UAV swarms. An enhanced resilience model of the UAV swarm is proposed in this study, which incorporates the factors of self-dynamics, dynamics of topology, dynamics of information transmission, and SIS into the complex network model. The model proposed in this paper has the capability to effectively capture changes in the network topology as well as the dynamics of the system. The average number of susceptible drones is utilized as the metric to evaluate the resilience of the swarm. Furthermore, an experiment is conducted where a UAV swarm successfully carries out a surveillance mission. The proposed model not only enables the support of mission planning but also facilitates the design enhancements of UAV swarms.

Publisher

Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne

Subject

Industrial and Manufacturing Engineering,Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3