Reconstruction-based stacked sparse auto-encoder for nonlinear industrial process fault diagnosis

Author:

Weng Qihang,Ren ShaojunORCID,Zhu Baoyu,Jin Yinfeng,Si Fengqi

Abstract

The reconstruction-based (RB) approach can effectively suppress the misdiagnosis problem due to the smearing effect in fault isolation. However, the current exploration of the RB approach for large-scale nonlinear systems is still limited. Therefore, this paper proposes a reliable and effective fault diagnosis method based on a reconstruction-based stacked sparse autoencoder (RBSSAE) for high-dimensional industrial systems. In RBSSAE, a reconstruction-based index achieved by the Steffensen iterative method is developed to check whether the given variable(s) are responsible for the faults efficiently. However, the number of possible faulty variable combinations grows exponentially with the system dimension or actual abnormal variables, causing an unbearable computational burden. Hence, the proposed RBSSAE utilizes a sequential floating forward selection approach to rapidly isolate the most decisive variable combination, meeting a requirement of online fault diagnosis. Finally, the effectiveness of the RBSSAE is verified on a numerical example and a real industrial case.

Publisher

Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne

Subject

Industrial and Manufacturing Engineering,Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3