Experimental and finite element analysis of PPF controller effectiveness in composite beam vibration suppression

Author:

Mitura Andrzej,Gawryluk Jaroslaw

Abstract

In this paper the problem of vibration reduction is considered. Generally, mechanical vibrations occurring during the operation of a system are undesirable and may have a negative effect on its reliability. A finite element model of a single active blade is developed using the Abaqus software. This structure consists of a multi-layer glass-epoxy composite beam with an embedded macro fiber composite (MFC) piezoelectric actuator. For vibration control the use of a positive position feedback (PPF) controller is proposed. To include the PPF controller in the Abaqus software, a special subroutine is created. The developed control algorithm code makes it possible to solve an additional differential equation by the fourth order RungeKutta method. A numerical dynamic analysis is performed by the implicit procedure. The beam responses with and without controller activation are compared. The control subsystem model also includes the hysteresis phenomenon of the piezoelectric actuator. Numerical findings regarding the PPF controller’s effectiveness are verified experimentally.

Publisher

Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne

Subject

Industrial and Manufacturing Engineering,Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3