A method for determining the location and type of fault in transmission network using neural networks and power quality monitors

Author:

Šipoš Mario,KLAIĆ ZvonimirORCID,Nyarko Karlo EmmanuelORCID,Fekete KrešimirORCID

Abstract

A new technique for identifying the location of a fault on a power line utilizing neural networks is presented in this paper. Specifically, the procedure involves four stages (three of which employ neural networks): gathering voltage input data via simulation, classifying the fault type, detecting the faulted line, and determining the fault position on the power line. This model was developed and tested for the IEEE 39 bus test system. Input voltages are obtained using DigSILENT PowerFactory software in which a set of three-phase and single-phase short circuits are simulated. Not voltages from all buses are used for the subsequent stages, only voltages from the optimally placed 12 buses in the IEEE 39 bus test system are used. In the second step, the first neural network is employed in order to classify the fault type – single-phase or three-phase. In the second stage, another neural network is used to determine the faulted line and in the third stage, the last neural network is developed to determine the fault position on the faulted line.

Publisher

Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3