Improved weather indices based Bayesian regression model for forecasting crop yield

Author:

YEASIN M.,SINGH K. N.,LAMA A.ORCID,GURUNG B.

Abstract

As agriculture is the backbone of the Indian economy, Government needs a reliable forecast of crop yield for planning new schemes. The most extensively used technique for forecasting crop yield is regression analysis. The significance of parameters is one of the major problems of regression analysis. Non-significant parameters lead to absurd forecast values and these forecast values are not reliable. In such cases, models need to be improved. To improve the models, we have incorporated prior knowledge through the Bayesian technique and investigate the superiority of these models under the Bayesian framework. The Bayesian technique is one of the most powerful methodologies in the modern era of statistics. We have discussed different types of prior (informative, non-informative and conjugate priors). The Markov chain Monte Carlo (MCMC) methodology has been briefly discussed for the estimation of parameters under Bayesian framework. To illustrate these models, production data of banana, mango and wheat yield data are taken under consideration. We compared the traditional regression model with the Bayesian regression model and conclusively infer that the models estimated under Bayesian framework provided superior results as compared to the models estimated under the classical approach.

Publisher

India Meteorological Department

Subject

Atmospheric Science,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AutoWeatherIndices: Calculating Weather Indices;CRAN: Contributed Packages;2022-08-26

2. Growth and yield estimation of banana through mathematical modelling: a systematic review;The Journal of Agricultural Science;2022-05-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3