Trends in climate change observed under tropical wet and tropical montane climates; A case study from Sri Lanka

Author:

Nissanka Nuwanthi,Lokupitiya Erandathie,Jayawardena Shiromani

Abstract

Climate change-related changes in temperature and precipitation trends must be investigated at local, regional and global levels. Temperature and precipitation trends in two selected regions having tropical wet and tropical montane climates (i.e., Colombo and Nuwara Eliya respectively) in Sri Lanka were studied for a 30 year period from 1989 to 2019, to evaluate the temporal dynamics of climate change. Precipitation trends were analyzed on annual, monthly, and seasonal scales, while the trends in mean, minimum, and maximum temperatures were examined on annual and monthly scales. Decadal time series plots were used to study decadal variations in average temperature and precipitation. The trends in extreme temperature and precipitation events were also evaluated. In addition, the trends in diurnal temperature range (DTR), cool and warm nights, and heat index (HI) were studied. The significance of trends was evaluated using the Mann-Kendall test, while the magnitude of the slope was assessed by Sen’s slope estimator. Clear statistically significant increasing trends were observed for the mean annual temperatures under the tropical wet and tropical montane climates, and no clear trends were observed in annual precipitation in both districts. There were decreasing trends in south-west monsoon rainfall, with a significant decrease in Nuwara Eliya under the tropical montane climate. Increasing trends were observed for the average monthly precipitation in November (i.e., during the inter-monsoonal rains) and average monthly temperature in April (i.e., the hottest month) over the last decade (i.e., 2010-2019) in Colombo. The DTR has significantly decreased over the last three decades in Colombo. A significant upward trend was observed for HI values during the last decade in Colombo. Colombo also showed a statistically significant decreasing trend in the number of cool nights and a statistically significant decreasing trend in the number of warm nights over the last decade.

Publisher

India Meteorological Department

Subject

Atmospheric Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3