Classification and characteristics of abrupt change based on the Lorenz equation

Author:

DA CHAOJIU,CHEN TAI,SHEN BINGLU,SONG JIAN

Abstract

In this paper, preliminary theoretical research on abrupt change induced by the forcing term in a dynamical system is described. Taking the Lorenz equationtrajectoryasthe research object, the trajectory response to different pulse forcing terms is studied based on the stability theorem of differential equations and numerical methods. From the perspective of a dynamical system, abrupt changecan be classified as internal or external. The former reflectstrajectory self-adjustment inside the attractor, whereasthe latter represents the bizarre behaviorof the trajectoryin its deviation from the attractor. This classification helps in understanding the physical mechanisms of different manifestations of atmospheric abrupt change. For different intensities and durations of the pulse forcing term,which are simplified to the magnitude and width of a rectangular wave, respectively, the corresponding abrupt change is analyzed quantitatively. It is established that the larger the amplitude of the pulse forcing term, the greater the deviation of thetrajectory from the attractor and the more violent theabrupt change. Moreover, the greater the width of the pulse forcing term, the longer the duration over which the trajectory deviates from the attractor. Finally, two simple but meaningful linear relationships are obtained: one between the amplitude of the pulse forcing term and the distance of trajectory deviation from the attractor, and the other between the width of the pulse forcing term and the duration over which the trajectory dwells outside of the attractor. These relationships indicate that nonlinear systems have some linear properties.  

Publisher

India Meteorological Department

Subject

Atmospheric Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3