Author:
YADAV RR,SISODIA BVS,KUMAR SUNIL
Abstract
Application of principal component analysis in developing statistical models for forecasting crop yield has been demonstrated. The time series data on wheat yield and weekly weather variables, viz., Minimum and maximum temperature, Relative Humidity, Wind- Velocity and Sun-Shine hours pertaining to the period 1990 to 2010 in Faizabad district of Uttar Pradesh have been used in this study. Weather indices have been constructed using weekly data on weather variables (Agrawal et al., 1983). Four models have been developed using principal component analysis as regressor variables including time trend and wheat yield as regressand. The model 1 and 3 have been found to be most appropriate on the basis of R2adj, percent deviation of forecast, RMSE (%) and PSE for the forecast of wheat yield two months before the harvest of the crop.
Publisher
India Meteorological Department
Subject
Atmospheric Science,Geophysics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献