Improving remote sensing based agricultural drought characterization in Saurashtra, Gujarat : A region-specific threshold approach

Author:

PANDYA PARTHSARTHI A.,GONTIA NARENDRA KUMAR

Abstract

Remote sensing technology has demonstrated its significant utility in the monitoring and mapping of agricultural drought on a global scale. This study focused on the assessment of agricultural drought in the Saurashtra region of Gujarat, India, utilizing a comprehensive dataset spanning 33 years from Landsat and Sentinel satellites. It employed various vegetation indices, including NDVI (Normalized Difference Vegetation Index), Anomaly Index (NAI), Vegetation Condition Index (VCI) and NDWI Anomaly index (NDWIA), to gauge drought conditions. The performance of these indices was evaluated through the generation of drought severity maps and their correlation analysis with major Kharif crops in the region, specifically cotton and groundnut. The analysis pinpointed major agricultural drought years, such as 1986, 1987, 1991, 2000, 2002 and 2012, which corresponded to substantial crop yield losses ranging from 37% to 76% for cotton and 66% to 95% for groundnut, varying by district. Despite VCI demonstrating equivalent or superior correlations with crop yields (ranging from 0.32 to 0.73 for cotton and 0.33 to 0.75 for groundnut) compared to NAI in various districts, it tended to underestimate drought severities, designating only 2 to 9 drought years for different districts. Consequently, this study recommends revised VCI drought severity thresholds, which enhance the categorization of agricultural drought in terms of severity levels and corresponding yield losses for cotton and groundnut in the Saurashtra region of Gujarat. Furthermore, it underscores the need to establish region-specific drought severity thresholds by identifying the most suitable vegetation index for effective quantification of agricultural drought, thereby facilitating informed drought mitigation measures.

Publisher

India Meteorological Department

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3