Malaria Parasite Detection using Efficient Neural Ensembles

Author:

Mishra Saurav

Abstract

Caused by the bite of the Anopheles mosquito infected with the parasite of genus Plasmodium, malaria has remained a major burden towards healthcare for years with an approximate 400,000 deaths reported globally every year. The traditional diagnosis process for malaria involves an examination of the blood smear slide under the microscope. This process is not only time consuming but also requires pathologists to be highly skilled in their work. Timely diagnosis and availability of robust diagnostic facilities and skilled laboratory technicians are very much vital to reduce the mortality rate. This study aims to build a robust system by applying deep learning techniques such as transfer learning and snapshot ensembling to automate the detection of the parasite in the thin blood smear images. All the models were evaluated against the following metrics - F1 score, Accuracy, Precision, Recall, Mathews Correlation Coefficient (MCC), Area Under the Receiver Operating Characteristics (AUC-ROC) and the Area under the Precision Recall curve (AUC-PR). The snapshot ensembling model created by combining the snapshots of the EfficientNet-B0 pre-trained model outperformed every other model achieving a f1 score - 99.37%, precision - 99.52% and recall - 99.23%. The results show the potential of  model ensembles which combine the predictive power of multiple weal models to create a single efficient model that is better equipped to handle the real world data. The GradCAM experiment displayed the gradient activation maps of the last convolution layer to visually explicate where and what a model sees in an image to classify them into a particular class. The models in this study correctly activate the stained parasitic region of interest in the thin blood smear images. Such visuals make the model more transparent, explainable, and trustworthy which are very much essential for deploying AI based models in the healthcare network.

Publisher

Poltekkes Kemenkes Surabaya

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Modified Deep Learning Architecture For Detecting MalariaInfected Cells;2024 International Conference on Knowledge Engineering and Communication Systems (ICKECS);2024-04-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3