Genome-wide Association Study Identifies Candidate Loci with Major Contributions to the Genetic Control of Pod Morphological Traits in Snap Bean

Author:

Saballos Ana1,Williams Martin M.1

Affiliation:

1. Global Change and Photosynthesis Research Unit, US Department of Agriculture–Agricultural Research Service, Urbana, IL 61801, USA

Abstract

Snap beans are cultivars of common bean (Phaseolus vulgaris) that are cultivated for their fleshy immature pods that exhibit a wide diversity of pod shapes and sizes. The genetic basis of the snap bean pod shape is complex and involves the interaction of multiple genes. This study used a snap bean diversity panel composed of heirloom and improved cultivars used in North America and genome-wide association studies (GWAS) to investigate the genetic basis of pod morphological characteristics, including length, width, height, width/height ratio, and coefficients of variation (CVs). The GWAS detected multiple genomic regions associated with each pod trait, with a total of 20 quantitative trait loci (QTLs) for pod length, 9 for pod width, 14 for pod height, and 10 for pod width/height ratio. Regarding the CV of each pod trait, genome-wide association analyses detected six QTL for length CVs, five for width CVs, 15 for height CVs, and six for width/height ratio CVs. Thirteen regions in seven chromosomes were associated with two or more pod traits. Eighteen QTLs for pod traits in this study colocated with previously reported QTLs for pod and seed traits. The QTL intervals encompass gene models with homologues in other species that are involved in the control of developmental processes. These results capture the complex nature of the genetic control of snap bean pod traits and confirm the significance of genomic regions harboring overlapping QTLs identified in this and other studies. The phenotypic expression of pod traits in snap bean appears to be under the control of a few genomic regions with a strong effect with additional contributions of multiple small-effect regions. Validation of the function of the candidate genes identified in associated regions will contribute to our understanding of legume pod development.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

Reference73 articles.

1. Al-Bader N. 2014. Rogue pod traits in Phaseolus vulgaris (MS Thesis). Oregon State University, Corvallis, OR, USA. https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/4t64gr95g.

2. Arabidopsis leaf flatness is regulated by PPD2 and NINJA through repression of CYCLIN D3 genes;Baekelandt A,2018

3. A dwarfing gene that reduces seed weight and pod length in common bean;Bassett MJ,1982

4. Selection and adaptive introgression guided the complex evolutionary history of the European common bean;Bellucci E,2023

5. Identification of RAPD markers linked to five marker genes (blu, dgs, y, arg, and a flat pod mutant) in common bean;Beltrán GE,2002

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3