Identification of Tropane Alkaloid Chemotypes and Genotypes in Hyoscyamus niger L.

Author:

Kramer Lawrence1,Jayanty Sastry1,Reckhow David A.2,Sathuvalli Vidyasagar3

Affiliation:

1. Department of Horticulture and Landscape Architecture, Colorado State University, 218 Nutrien Building, 301 University Avenue, Fort Collins, CO 80523, USA

2. Department of Civil and Environmental Engineering, University of Massachusetts, 130 Natural Resources Road, Amherst, MA 01003, USA

3. Hermiston Agricultural Research and Extension Center, Oregon State University, Hermiston, OR 97838, USA

Abstract

Tropane alkaloids (TA) are compounds widespread in the Solanaceae family. The genera Atropa, Brugmansia, Hyoscyamus, and Scopolia, produce the pharmaceuticals hyoscyamine (Hy) and scopolamine (Sc), which are valued for their antimuscarinic and anticholinergic actions. The enzyme hyoscyamine 6β-hydroxylase (H6H) [electrical conductivity (EC) 1.14.11.11] catalyzes both the hydroxylation of hyoscyamine to 6β-hydroxyhyoscyamine and the epoxidation of the latter, leading to scopolamine (Hashimoto et al. 1993). During the examination of three genes in the TA biosynthetic pathway, the first committed step, the path branch point, and the final step in 13 accessions of Hyoscyamus niger from North America and Europe, genetic variations were found to be absent except in the h6h gene locus (GenBank: D26583.1). Quantification of TA showed average concentrations of 26 to 520 μg/g of dry leaf tissue among the accessions. From a monohybrid cross of the expected (Pennsylvania accession Ames 3103, aa) and novel (Netherlands accession PI 641691, bb) genotypes, the F2 population (n = 104) leaf and root tissues were extracted, analyzed for Hy and Sc contents, and compared with the h6h genotypes (aa, ab, bb). The polymorphism showed Mendelian inheritance. The presence of the polymorphic gene bb showed a marginally significantly greater concentration of hyoscyamine in the leaf tissue (P = 0.0675) and significantly greater concentration in root tissue (P = 0.0436), along with increased concentration of scopolamine in the root tissue (P = 0.0494) compared with the aa genotype. The increase in overall TA in the root tissue of the genotype bb was accompanied by a reduction in scopolamine in the foliar tissue. The 694-bp b amplicon has been sequenced for comparison with the expected 550-bp a amplicon and can be a useful enzymatic variant for TA metabolic engineering.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

Reference47 articles.

1. Genetics of actin-related sequences in tomato;Bernatzky R,1986

2. Production of plant secondary metabolites: A historical perspective;Bourgaud F,2001

3. Production of tropane alkaloids by biotransformation using recombinant Escherichia coli whole cells;Cardilloa AB,2017

4. DIFFUSE: Predicting isoform functions from sequences and expression profiles via deep learning;Chen H,2019

5. Regulation of plant secondary metabolism and associated specialized cell development by MYBs and bHLHs;Chezem WR,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3