Identification of Dof Transcription Factors in the Genome of Rosa chinensis

Author:

Zhang Jinzhu1,Mo Yu2,Chen Shuai2,Li Caihua3,Fang Qingxi4,Dong Jie2,Mou Zhongsheng3,Zhang Zheyu4,Che Daidi2,Chen Qingshan4

Affiliation:

1. College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; and Agricultural College, Northeast Agricultural University, Harbin 150030, China

2. College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China

3. Economic Crops Research Institute, Jilin Academy of Agricultural Sciences, Changchun 130033, China

4. Agricultural College, Northeast Agricultural University, Harbin 150030, China

Abstract

The DNA binding with one finger (Dof), as an important transcription factor, plays an important role in growth and development, primary and secondary metabolism, stress resistance, and plant hormone signal transduction. However, the identification and analysis of the Dof transcription factor family in Rosa is rarely reported. In this study, 28 Rosa chinensis Dof (RcDof) members were identified, which were located on seven chromosomes. The RcDofs were divided into 12 subfamilies according to evolutionary analysis. Through motif, gene structure, and cis-acting element analyses of the 12 subfamilies, the functions of RcDofs were analyzed and predicted. Furthermore, the Dof members in R. chinensis ‘Old Blush’ and another three species (Arabidopsis thaliana, Oryza sativa, and Zea mays) were systematically analyzed. Twelve subfamilies were found in these four species and the motifs and gene structures of Dof members in each subfamily were similar, which further proves that the RcDofs analysis is accurate. Through an intra- and interspecies collinearity analysis, it was found that the collinearity between A. thaliana and R. chinensis is closer in comparison. Tissue expression analysis of RcDofs was by quantitative reverse-transcription polymerase chain reaction (PCR). Quantitative real-time PCR analysis showed expressions of the RcDofs are tissue specific. The RcDofs had higher expression in leaves, roots, and flowers than other tissues. Taken together, this study provides valuable information for future research on functional exploration of RcDof genes and molecular breeding in Rosa.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3