Effects of Water-deficit Stress and Gibberellic Acid on Floral Gene Expression and Floral Determinacy in ‘Washington’ Navel Orange

Author:

Tang Lisa1,Lovatt Carol J.1

Affiliation:

1. Department of Botany and Plant Sciences, University of California, Riverside, CA 92521-0124

Abstract

Effects of water-deficit stress and foliar-applied gibberellic acid (GA3) on ‘Washington’ navel orange (Citrus sinensis) floral gene expression and inflorescence number were quantified. Trees subjected to 8 weeks of water-deficit stress [average stem water potential (SWP) −2.86 MPa] followed by 3 weeks of re-irrigation (SWP recovered to > −1.00 MPa) produced more inflorescences in week 11 than trees well-irrigated (SWP > −1.00 MPa) for the full 11 weeks (P < 0.001). After 8 weeks of water-deficit stress, bud expression of flowering locus t (FT), suppressor of overexpression of constans1 (SOC1), leafy (LFY), apetala1 (AP1), apetala2 (AP2), sepallata1 (SEP1), pistillata (PI), and agamous (AG) increased during the re-irrigation period (weeks 9 and 10), but only AP1, AP2, SEP1, PI, and AG expression increased to levels significantly greater than that of well-irrigated trees. Foliar-applied GA3 (50 mg·L−1) in weeks 2 through 8 of the water-deficit stress treatment did not reduce bud FT, SOC1, or LFY expression, but prevented the upregulation AP1, AP2, SEP1, PI, and AG expression that occurred during re-irrigation in water-deficit stressed trees not treated with GA3. Applications of GA3 to water-deficit stressed trees reduced inflorescence number 95% compared with stressed trees without GA3. Thus, GA3 inhibited citrus (Citrus sp.) floral development in response to water-deficit stress through downregulating AP1 and AP2 expression, which likely led to the failed activation of the downstream floral organ identity genes. The results reported herein suggest that bud determinacy and subsequent floral development in response to water-deficit stress in ‘Washington’ navel orange are controlled by AP1 and AP2 transcript levels, which regulate downstream floral organ identity gene activity and the effect of GA3 on citrus flower formation. The water-deficit stress floral-induction pathway provides an alternative to low-temperature induction that increases the potential for successful flowering in citrus trees grown in areas experiencing warmer, drier winters due to global climate change.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

Reference45 articles.

1. Flowering expert systeme development for a phenology based citrus decision support system;Albrigo,,2002

2. Influence of winter and spring weather on year-to-year citrus fruit set and yield variation in São Paulo, Brazil;Albrigo,,2006

3. Effects of water stress on lemon summer bloom: The “forzatura” technique in the Sicilian citrus industry;Barbera,,1985

4. Some aspects on water stress physiology of forced lemon (Citrus limon Burm) trees;Barbera,,1981

5. Floral initiation and inflorescence architecture: A comparative view;Benlloch,,2007

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3