Mechanism of Leaf Vein Coloration and Inheritance of Leaf Vein Color, Flower Form, and Floral Symmetry in Gloxinia

Author:

Kan Pei-Wen,Cheng Yu-Ching,Yeh Der-Ming

Abstract

Double-flowered gloxinia (Sinningia speciosa) cultivars with foliar variegation might have a greater market appeal as flowering foliage plants. Crosses were made among 16 gloxinia cultivars and their progenies were analyzed to determine the inheritance of leaf vein color, flower form, and floral symmetry. All plants from self-pollinating white-veined cultivars or crosses between white-veined and green-veined cultivars produced white veins. Progeny derived from self-pollinating plants of white-veined cultivars × green-veined cultivars segregated into a ratio of 3 white-veined:1 green-veined. All plants from self-pollinating or cross-pollinating single-flowered cultivars produced single flowers. Progeny of self-pollination or crosses between double-flowered cultivars segregated into a ratio of 3 double flowers:1 single flower. Contingency chi-square tests revealed that leaf vein color and flower form were inherited independently. New gloxinia progenies with homozygous white veins and double flowers were successfully developed from the F2 segregating population. Plants from self-pollinating or cross-pollinating cultivars with actinomorphic flowers produced actinomorphic flowers. A single dominant gene expressed in the homozygous or heterozygous state resulted in the zygomorphic flowers. Independent inheritance was observed between vein color and floral symmetry. Air spaces between the epidermis and the mesophyll cells were observed in the white, but not in the green, leaf vein portions. Net photosynthesis did not differ significantly between the white vein and adjacent green portion of the same leaf.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3