Varied Attributes of Jalapeño Pepper Cultivars Influence Fresh-cut Product Quality

Author:

Park Eunhee1,Luo Yaguang1,Zhou Bin1,Fonseca Jorge M.1,Stommel John R.2

Affiliation:

1. US Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Food Quality Laboratory, Beltsville, MD 20705-2325, USA

2. US Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Genetic Improvement for Fruits & Vegetables Laboratory, Beltsville, MD 20705-2325, USA

Abstract

During the past 40 years, the US fresh-cut product market has experienced a consistent increase in demand because consumers prioritize health and convenience. Increased interest in fresh-cut products and ready-to-eat vegetables has led to innovations in breeding, product selection, and packaging. However, despite the increased popularity of bell pepper and chile pepper (Capsicum annuum L.), research of fresh-cut jalapeño pepper is limited. This study was conducted to identify jalapeño cultivars that could be suitable as a raw fresh-cut product and explore measures beyond tissue membrane electrolyte leakage (EL) of processed products that may be useful for the identification of cultivars suitable for fresh-cut applications. A total of 22 fresh-cut parameters were examined across five cultivars of jalapeño peppers and 10 intercrosses of these cultivars, including visual quality based on an image analysis via a computer vision system, package headspace gas composition, tissue membrane EL, and texture. Based on our results, the genotypes were grouped into five clusters using a cluster analysis. Variables including tissue softening (r2 = 0.95), EL (r2 = 0.95), total energy of the mesocarp (r2 = 0.95), and package headspace carbon dioxide (CO2) partial pressure (r2 = 0.94) had strong associations with the cluster. A principal component analysis with biplots further confirmed the results. Cultivars Goliath and Emerald Fire and their hybrids in the first and second clusters showed good quality for fresh-cut applications. The fifth cluster, represented by a single cultivar, Jalapeño M, had the smallest physical size, rapid shelf-life decline, accumulated CO2 partial pressures, increased EL, and rapid tissue softening in comparison with the other genotypes. All jalapeño cultivars except Jalapeño M maintained good quality until day 14 postprocessing, and some maintained good quality until 21 days postprocessing. Hybrid crosses suggested that two of the cultivars evaluated, Goliath and Emerald Fire, were useful as parents when transferring superior fresh-cut quality traits to progeny. Traditionally, the EL level has been used as an index of freshness (or tissue deterioration). Our results showed that other quality analyses, including measurements of tissue softening via an imaging analysis, and physical analyses of tissue firmness can also be used as indices for the freshness of fresh-cut jalapeños. The results suggest that fruit size, wall thickness, and skin toughness might be useful as predictive measures in the field for the selection of jalapeño genotypes with superior fresh-cut quality.

Publisher

American Society for Horticultural Science

Reference55 articles.

1. Sensory and instrument measurement of apple texture;Abbott JA,1984

2. Consumer evaluation and quality measurement of fresh-cut slices of Fuji, Golden Delicious, GoldRush, and Granny Smith apples;Abbott JA,2004

3. Ethylene absorbent to maintain quality of lightly processed fruits and vegetables;Abe K,1991

4. Microbial and quality changes in minimally processed baby spinach leaves stored under super atmospheric oxygen and modified atmosphere conditions;Allende A,2004

5. Fracture properties of stored fresh and osmotically manipulated apple tissue;Alvarez MD,2000a

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3