Identification of Resistance to Target Spot of Tomato Caused by Corynespora cassiicola in Wild Tomato Accessions

Author:

Sierra-Orozco Edgar1,Smeda John1,Xavier Katia Viana1,Shekasteband Reza1,Vallad Gary E.1,Hutton Samuel F.1

Affiliation:

1. Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598, USA

Abstract

Tomato (Solanum lycopersicum) is an important vegetable crop and a valuable source of nutrients for the human diet. The southeast is the main fresh market tomato producer of the United States, with much of the production concentrated in Florida. However, production in this region is threatened by plant diseases such as target spot of tomato (TS) caused by Corynespora cassiicola, a multitrophic fungus widely distributed in tropical and subtropical areas. TS can infect foliage and fruit, often resulting in significant yield losses in conductive environments. There are no known TS-resistant cultivars, and control relies entirely on fungicidal sprays. However, several studies have demonstrated that the fungus is developing resistance to commonly used fungicides which further complicates disease management. The objective of this work was to identify sources of resistance to TS from wild Solanum accessions. Initial screens of 83 accessions informed the selection of 24 accessions for a more robust screening in which six diverse C. cassiicola isolates were used for single-isolate inoculation experiments. The results from a broad-sense mixed-model analysis including data from all six experiments demonstrated that all 24 accessions had significantly lower disease severities compared with the susceptible controls, suggesting that all accessions potentially harbor resistance quantitative trait loci (QTLs). Solanum cheesmaniae accession LA0524, S. galapagense accessions LA0483 and LA0532, and S. pimpinellifolium accession LA2093 were among the most resistant accessions tested and may be particularly useful for introgression of resistance into cultivated germplasm and for mapping of TS resistance QTLs.

Publisher

American Society for Horticultural Science

Reference45 articles.

1. Structural analysis of cassiicolin, a host-selective protein toxin from Corynespora cassiicola;Barthe P,2007

2. Genomic variation in tomato, from wild ancestors to contemporary breeding accessions;Blanca J,2015

3. Target spot of tomato;Blazquez CH,1972

4. Inheritance of resistance in tomato to target leaf spot;Bliss FA,1973

5. Role of cassiicolin, a host-selective toxin, in pathogenicity of Corynespora cassiicola, causal agent of a leaf fall disease of Hevea;Breton F,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3