Strong Fluorescence Expression of ZsGreen1 in Petunia Flowers by Agrobacterium tumefaciens–mediated Transformation

Author:

Cho Keun H.,Kim Joo Young,Alvarez Maria I.,Laux Veronica Y.,Valad Lauren K.,Tester Joshua M.,Colquhoun Thomas A.,Clark David G.

Abstract

Fluorescent proteins (FT) have become essential, biological research tools. Many novel genes have been cloned from a variety of species and modified for effective, stable, and strong expression in transgenic organisms. Although there are many applications, FT expression has been employed most commonly at the cellular level in plants. To investigate FT expression at the whole-plant level, particularly in flowers, petunia ‘Mitchell Diploid’ [MD (Petunia ×hybrida)] was genetically transformed with seven genes encoding FTs: DsRed2, E2Crimson, TurboRFP, ZsGreen1, ZsYellow1, rpulFKz1, or aeCP597. Each gene was cloned into a pHK-DEST-OE vector harboring constitutive figwort mosaic virus 35S promoter and NOS-terminator. These plasmids were individually introduced into the genome of MD by Agrobacterium tumefaciens–mediated transformation. Shoot regeneration efficiency from the cocultured explants ranged from 8.3% to 20.3%. Various intensities of red, green, and yellow fluorescence were detected from TurboRFP, ZsGreen1, and ZsYellow1-transgenic flowers, respectively, under ultraviolet light for specific excitation and emission filters. More than 70% of plants established from the regenerated shoots were confirmed as transgenic plants. Transgenic ZsGreen1 petunia generated strong, green fluorescence in all flower organs of T0 plants including petals, stigmas, styles, anthers, and filaments. Most of the chromophores were localized to the cytoplasm but also went into the nuclei of petal cells. There was a positive linear relationship (R2 = 0.88) between the transgene expression levels and the relative fluorescent intensities of the ZsGreen1-transgenic flowers. No fluorescence was detected from the flowers of DsRed2-, E2Crimson-, rpulFKz1-, or aeCP597-transgenic petunias even though their gene transcripts were confirmed through semiquantitative reverse transcriptase-polymerase chain reaction. T1 generation ZsGreen1 plants showed green fluorescence emission from the cotyledons, hypocotyls, and radicles, which indicated stable FT expression was heritable. Four homozygous T2 inbred lines were finally selected. Throughout this study, we demonstrated that ZsGreen1 was most suitable for generating visible fluorescence in MD flowers among the seven genes tested. Thus, ZsGreen1 may have excellent potential for better utility as a sensitive selectable marker.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3