Transcriptome Analysis of Chrysanthemum lavandulifolium Response to Salt Stress and Overexpression a K+ Transport ClAKT Gene-enhanced Salt Tolerance in Transgenic Arabidopsis

Author:

Huang He,Liu Yuting,Pu Ya,Zhang Mi,Dai Silan

Abstract

Plant growth and development are significantly affected by salt stress. Chrysanthemum lavandulifolium is a halophyte species and one of the ancestors of chrysanthemum (C. ×morifolium). Understanding how this species tolerates salt stress could provide vital insight for clarifying the salt response systems of higher plants, and chrysanthemum-breeding programs could be improved. In this study, salt tolerance was compared among C. lavandulifolium and three chrysanthemum cultivars by physiological experiments, among which C. lavandulifolium and Jinba displayed better tolerance to salt stress than the other two cultivars, whereas Xueshan was a salt-sensitive cultivar. Using the transcriptome database of C. lavandulifolium as a reference, we used digital gene expression technology to analyze the global gene expression changes in C. lavandulifolium seedlings treated with 200 mm NaCl for 12 hours compared with seedlings cultured in normal conditions. In total, 2254 differentially expressed genes (DEGs), including 1418 up-regulated and 836 down-regulated genes, were identified. These DEGs were significantly enriched in 35 gene ontology terms and 29 Kyoto Encyclopedia of Genes and Genomes pathways. Genes related to signal transduction, ion transport, proline biosynthesis, reactive oxygen species scavenging systems, and flavonoid biosynthesis pathways were relevant to the salt tolerance of C. lavandulifolium. Furthermore, comparative gene expression analysis was conducted using reverse transcription polymerase chain reaction to compare the transcriptional levels of significantly up-regulated DEGs in C. lavandulifolium and the salt-sensitive cultivar Xueshan, and species-specific differences were observed. The analysis of one of the DEGs, ClAKT, an important K+ transport gene, was found to enable transgenic Arabidopsis thaliana to absorb K+ and efflux Na+ under salt stress and to absorb K+ under drought stress. The present study investigated potential genes and pathways involved in salt tolerance in C. lavandulifolium and provided a hereditary resource for the confinement of genes and pathways responsible for salt tolerance in this species. This study provided a valuable source of reference genes for chrysanthemum cultivar transgenesis breeding.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3