Transcriptional Regulation of Hydrogen Peroxide and Calcium for Signaling Transduction and Stress-defensive Genes Contributing to Improved Drought Tolerance in Creeping Bentgrass

Author:

Li Zhou,Peng Yan,Huang Bingru

Abstract

Small molecules, including H2O2 and Ca, mediate stress signaling and drought tolerance in plants. The objective of this study was to determine whether improvement in drought tolerance by H2O2 and Ca were associated with the regulation of transcription factors and stress-protective genes in perennial grass species. Plants of creeping bentgrass (Agrostis stolonifera) were sprayed with water (control), H2O2 (9 mm), or CaCl2 (10 mm) and exposed to drought stress for 20 days in controlled-environment growth chambers. Foliar application of H2O2 or Ca led to significant improvement in drought tolerance of creeping bentgrass, as demonstrated by greater turf quality, leaf relative water content, chlorophyll content, photochemical efficiency, and cell membrane stability, as compared with the untreated control. The application of H2O2 and Ca resulted in significant up-regulation of genes in Ca signaling transduction pathways [Ca-dependent kinase 26 (CDPK26), mitogen-activated protein kinase 1 (MAPK1), and 14-3-3] and transcript factors (WRKY75 and MYB13). For genes encoding antioxidant enzymes, H2O2 mainly enhanced superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), and dehydroascorbate reductase (DHAR) expression, while Ca primarily improved transcript levels of SOD, monodehydroascorbate reductase (MDHAR), and GR. In addition, heat shock protein 70 (HSP70), metallothionein 1 (MT1), and glutamine synthetase 2 (GS2) were also markedly up-regulated by H2O2 and Ca under drought stress. However, the transcript level of lipoxygenase 3 (LOX3) was significantly down-regulated by H2O2 and Ca under well-watered and drought conditions. These results imply that H2O2 and Ca commonly or differentially regulate genes expression in association with drought tolerance through activating Ca signaling pathway and regulating transcription factors and stress-protective genes expression, leading to the alleviation of lipid peroxidation, maintenance of correct protein folding and translocation, and enhancement of nitrogen metabolism under a prolonged period of drought stress in creeping bentgrass.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3