Immunolocalization of Endogenous Indole-3-Acetic Acid and Abscisic Acid in the Shoot Internodes of Fargesia yunnanensis Bamboo during Development

Author:

Wang Shuguang,Ma Yongpeng,Wan Chengbin,Hse Chungyun,Shupe Todd F.,Wang Yujun,Wang Changming

Abstract

The Bambusoideae subfamily includes the fastest-growing plants worldwide, as a consequence of fast internode elongation. However, few studies have evaluated the temporal and spatial distribution of endogenous hormones during internode elongation. In this paper, endogenous indole-3-acetic acid (IAA) and abscisic acid (ABA) were detected in different developmental internodes during shoot elongation by immunolocalization. Immunohistochemistry showed that IAA was mainly present in the shoot apex, leaf sheath primordia, parenchymal cells, and vascular tissues. During internode elongation and maturation, the IAA signals decreased significantly and then increased slightly, with the weakest signals observed in the rapidly elongating internode. Based on immunogold localization, most IAA signals were detected in the cytoplasm and nuclei of both parenchymal and fiber cells, and few signals were detected in cell walls in the unelongated and elongating internodes. After the completion of internode elongation, additional IAA signals were detected in the secondary walls of both parenchymal and fiber cells. Immunohistochemical localization of ABA showed that ABA signals decreased with internode elongation and maturation, with the weakest signal observed in the internodes of 3-month-old shoots. In addition, few ABA signals were detected in the shoot apex. The strongest IAA and ABA signals in unelongated internodes suggested that both hormones participated in the mediation of internode differentiation but not in the rapid elongation. Moreover, IAA was involved in secondary cell wall deposition.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3