Photosynthetic and Transpiration Responses to Light, CO2, Temperature, and Leaf Senescence in Garlic: Analysis and Modeling

Author:

Kim Soo-Hyung,Jeong Jig Han,Nackley Lloyd L.

Abstract

Characterization of leaf physiology is an important step for understanding the ecophysiology of a crop as well as for developing a process-based crop simulation model. We determined photosynthetic and transpiration responses to photosynthetic photon flux (PPF), carbon dioxide concentrations, and temperature, and parameterized a coupled leaf gas-exchange model for hardneck garlic (Allium sativum). The parameterized model performed with high accuracy and precision in predicting photosynthetic responses [r2 = 0.95, bias = 1.7 μmol·m−2·s−1, root mean square error (RMSE) = 2.4 μmol·m−2·s−1] when tested against independent data that were not used for model calibration. The model performance for transpiration rates was less satisfactory (r2 = 0.49, bias = –0.14 mmol·m−2·s−1, RMSE = 0.94 mmol·m−2·s−1). In addition, we characterized the relationships among chlorophyll meter readings, leaf photosynthetic capacity (Amax), and leaf nitrogen content in garlic leaves. The chlorophyll meter readings were a reasonable indicator of both Amax (r2 = 0.61) and leaf nitrogen (N) status (r2 = 0.51) for garlic leaves we studied. The garlic leaf gas-exchange model developed in this study can serve as a key component in ecophysiological crop models for garlic. Similarly, the quantitative relationship identified between chlorophyll meter readings and Amax in this study can provide useful information for non-destructively assessing leaf photosynthetic capacity in garlic.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3