Reproduction and Horticultural Performance of Transgenic Ethylene-insensitive Petunias

Author:

Gubrium Erika K.,Clevenger Donna J.,Clark David G.,Barrett James E.,Nell Terril A.

Abstract

A series of experiments on ethylene-insensitive (EI) petunia plants (Petunia ×hybrida Hort. Vilm.-Andr.) generated in two genetic backgrounds were conducted to determine the involvement of ethylene in horticultural performance. Experiments examined various aspects of horticultural performance: days to flower, flower senescence after pollination and without pollination, fruit set and ripening, and adventitious root formation on vegetative stem cuttings. The development of EI plants was altered in several ways. Time from seed sowing to first flower anthesis was decreased by a week for EI plants grown at 26/21 °C. Flower senescence in nonpollinated and self-pollinated flowers was delayed in all EI plants compared to wild-type plants. Fruit set percentage on EI plants was slightly lower than on wild-type plants and fruit ripening on EI plants was delayed by up to 7 days. EI plants produced fewer commercially acceptable rooted cuttings than wild-type plants. There was a basic difference in the horticultural performance of the two EI lines examined due to a difference in the genetic backgrounds used to generate the lines. EI plants displayed better horticultural performance when grown with day/night temperatures of 26/21 °C than 30/24 °C. These results suggest that tissue-specific ethylene insensitivity as well as careful consideration of the genetic background used in transformation procedures and growth conditions of etr1-1 plants will be required to produce commercially viable transgenic floriculture crops. EI petunias provide an ideal model system for studying the role of ethylene in regulating various aspects of plant reproduction.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Postharvest Technology for Commercial Floriculture;Ornamental Horticulture: Latest Cultivation Practices and Breeding Technologies;2024

2. Role of Biotechnological Interventions in Improving the Traits of Flowering Ornamentals;Asian Journal of Biological Sciences;2023-09-30

3. Elevated Atmospheric Ethylene and High Temperature Independently Inhibit Fruit Set But Not Vegetative Growth in Tomato;HortScience;2023-03

4. Ethylene in floriculture;The Plant Hormone Ethylene;2023

5. Ethylene signaling in plants;Journal of Biological Chemistry;2020-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3