Author:
Stommel John R.,Abbott Judith A.,Campbell T. Austin,Francis David
Abstract
Fruit firmness is a key quality component of tomatoes (Lycopersicon esculentum Mill.) for fresh-market and processed product applications. We characterized inheritance of firmness in processing tomato germplasm developed from interspecific L. esculentum Mill. × L. cheesmanii f. minor (Hook. f.) C.H. Mull. and intraspecific L. esculentum crosses. Although firmness is a key quality attribute of tomato, there is no standard method for measuring it. We measured the elastic portion of firmness by compression (compression Fmax) and puncture (puncture Fmax), and the viscoelastic portion by force-relaxation. The experimental design incorporated six genotypes in a complete 6 × 6 diallel. Compression Fmax and force measurements recorded at 0.5, 1.0, 5.0, and 10.0 seconds of relaxation were strongly related to each other, while relaxation parameters (A, B, C) describing relaxation curve shape were generally independent. Compression Fmax, relaxation curve parameter A, and puncture Fmax were significantly different among hybrids. Significant differences between Maryland and Ohio environments were evident for compression Fmax and relaxation curve parameter A. The patterns of firmness means differed among firmness measurement methods, namely for compression Fmax and puncture Fmax, indicating that they measure different aspects of tomato fruit firmness. Soft-fruited parents generally exerted a negative effect on compression Fmax, whereas firm-fruited parents most often exerted a positive effect on compression Fmax. The force required for fruit compression best approximated subjective assessment of fruit firmness. Force required for fruit puncture was subject to a significant environmental × hybrid influence in the genotypes evaluated. Shape of the force relaxation curve (i.e., parameter A) was not predictive of relative fruit firmness. General combining ability (GCA) and specific combining ability were both significant with GCA being the principal source of genetic variation. In agreement with combining ability estimates, narrow-sense heritability estimates for compression Fmax and puncture Fmax were relatively high.
Publisher
American Society for Horticultural Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献