Global Analysis of Genes Regulated by Low Temperature and Photoperiod in Peach Bark

Author:

Bassett Carole L.,Wisniewski Michael E.,Artlip Timothy S.,Norelli John L.,Renaut Jenny,Farrell Robert E.

Abstract

In response to environmental cues plants undergo changes in gene expression that result in the up- or down-regulation of specific genes. To identify genes in peach [Prunus persica (L.) Batsch.] trees whose transcript levels are specifically affected by low temperature (LT) or short day photoperiod (SD), we have created suppression subtractive hybridization (SSH) libraries from bark tissues sampled from trees kept at 5 °C and 25 °C under short day (SD) photoperiod or exposed to a night break (NB) interruption during the dark period of the SD cycle to simulate a long day (LD) photoperiod. Sequences expressed in forward and reverse subtractions using various subtracted combinations of temperature and photoperiod treatments were cloned, sequenced, and identified by BLAST and ClustalW analysis. Low temperature treatment resulted in the up-regulation of a number of cold-responsive and stress-related genes and suppression of genes involved in “housekeeping” functions (e.g., cell division and photosynthesis). Some stress-related genes not observed to be up-regulated under LT were increased in response to SD photoperiod treatments. Comparison of the patterns of expression as a consequence of different temperature and photoperiod treatments allowed us to determine the qualitative contribution of each treatment to the regulation of specific genes.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3