Nitrogen and Sulfur Fertilization Influences Aromatic Flavor Components in Shrunken2 Sweet Corn Kernels

Author:

Wang Adamson D.,Swiader John M.,Juvik John A.

Abstract

Dimethyl sulfide (DMS) has been identified as the compound responsible for the characteristic aroma of cooked sweet corn (Zea mays L.) and, along with sugar and water-soluble polysaccharides, is one of the main flavor components in the kernels. Because of the close relationship between DMS and its amino acid precursor S-methylmethionine, the premise was formulated that it might be possible to improve sweet corn aroma and overall eating quality through enhanced production of DMS from increased application of N and S to the crop in the field. Studies were conducted on a Plainfield sand and a Flanagan silt loam to evaluate the effects of N and S fertilization on kernel DMS production in several commercial sh2 hybrids; in the process, the effect of N and S fertilization on various yield and yield component parameters was also determined. Hybrid was the main factor affecting kernel DMS production, although in both soils kernel DMS levels were influenced by significant interactions between hybrid and fertilizer treatments. Kernel DMS content, in response to increasing N fertilization rates, increased by an average of 85% in three of six hybrids in the Plainfield sand and by 60% in two of three hybrids in the Flanagan silt loam. The effect of S fertilization on kernel DMS production was small, with only one hybrid on the sandy soil showing a positive response (38%) to S application, and then in combination with high N rates. Irrespective of N-S fertilization regime, kernel DMS concentrations decreased at both locations by an average of ≈8.5% per day as kernel maturity increased. The results showed that kernel DMS production may be enhanced by N nutrition, independent of N fertilization effects on ear and kernel yields.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3