Inheritance of Dwarfiness and Erect Growth Habit in Progenies of Jatropha curcas × Jatropha integerrima

Author:

One Khin Thida,Muakrong Narathid,Phetcharat Chamnanr,Tanya Patcharin,Srinives Peerasak

Abstract

Jatropha (Jatropha curcas) is one of the most popular tree crops for seed production as a source of oil for biodiesel. However, currently grown cultivars are too large in canopy size and thus have very low harvest index. Alteration of canopy height and size can lead to identification of a desirable plant architecture for jatropha. A study was conducted to determine genetic control of dwarfiness and erect growth habit in jatropha populations derived from an interspecific cross between J. curcas with tall-erect (TL-ER) plant type and J. integerrima with dwarf-spreading (DW-SP) plant type. Crosses were made between both species to develop F1, F2, BC1F1, and BC1F2 generations. The F2 plants segregated at a 1:2:1 ratio for tall (TL), intermediate (ID), and dwarf (DW) plant types as well as for spreading (SP), upright (UP), and erect (ER) canopy angles. Both characters segregated independently producing nine phenotypes including TL-ER, TL-UP, TL-SP, ID-ER, ID-UP, ID-SP, DW-ER, DW-UP, and DW-SP at a 1:2:1:2:4:2:1:2:1 ratio. The BC1F1 (J. curcas × F1) plant segregated into TL-ER, TL-UP, ID-ER, and ID-UP at a 1:1:1:1 expected ratio. Six BC1F2 lines were also evaluated to confirm the results by selfing two trees each of BC1F1 showing TL-ER, TL-UP, and ID-ER growth habits. The progenies of TL-ER trees were all TL-ER; the progenies of TL-UP trees segregated into TL-ER, TL-UP, and TL-SP at an expected 1:2:1 ratio, whereas the progenies of ID-ER trees segregated into TL-ER, ID-ER, and DW-ER at an expected 1:2:1 ratio. The results indicated that dwarfiness and erect growth habit were each controlled by independent genes with incomplete dominant action. The knowledge and progenies obtained from this study can be used in breeding jatropha for desirable canopy size and shape.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3