Nitrate Uptake and Nitrogen Use Efficiency of Two Sweetpotato Genotypes during Early Stages of Storage Root Formation

Author:

Villagarcia Margarita R.,Collins Wanda W.,Raper C. David

Abstract

Soil N availability is an important component in storage root production of sweetpotato [Ipomoea batata (L.) Lam.]. A controlled-environment experiment was conducted to characterize effects of N availability on patterns of dry matter, nonstructural carbohydrates, and N accumulation, and to determine possible components of N use efficiency that vary between two genotypes of sweetpotato. Rooted cuttings of `Jewel' and MD810 were transplanted into pots filled with sand and kept in a growth chamber for 72 days. Plants were watered during the first 30 days with a complete nutrient solution that contained 14 mm NO3- and then for the next 42 days with one of three complete nutrient solution that contained either 2, 8, or 14 mm NO3-. At 30, 44, 58, and 72 days after transplanting, three plants from each cultivar and treatment combination were sampled and separated into leaves, stems plus petioles, fibrous roots, and storage roots. Each plant fraction was freeze-dried, weighed, ground, and analyzed for total N, soluble sugars, and starch. Availability of N in the substrate, which limited dry matter accumulation at 2 mm NO3-, was nonlimiting at 8 and 14 mm NO3-. In both genotypes, net assimilation rate, efficiency of N use (i.e., increments of dry matter accumulated per increment of N taken up), and proportion of dry matter allocated to storage roots were greater for N-stressed (2 mm NO3-) than N-replete (8 and 14 mm NO3-) plants. For the N-stressed plants, however, efficiency of N use was greater in MD810 than in `Jewel'. Although rate of NO3- uptake per unit fibrous root mass was similar in the two genotypes under the N stress treatment, MD810 had greater uptake rate than `Jewel' under nonlimiting availability of NO3- in the substrate. The increased rate of uptake under nonlimiting NO3- supplies apparently was related to enhanced rates of carbohydrate transport from shoots to roots. As tissue concentration of N declined in response to the lowest application of NO3-, shoot growth was limited prior to, and to a greater extent than, the photosynthetic rate. The resulting relative decline in sink activity of shoots thus presumably increased the availability of carbohydrates for transport to roots.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3